亿信华辰

睿治-智能数据治理平台

荣获DAMA中国数据治理优秀产品奖

首页亿信动态行业资讯数据治理

企业数据资产管理面临的问题

时间:2022-08-11来源:互联网浏览数:73

数据资产的用户场景可以概况为两类,找数据和管数据。找数据主要是数据分析、产品运营等数据消费者,基于数仓加工好的数据进行分析、应用。找数据时,主要的痛点如下:

1)数据找不到
数据生产者和消费者会存在业务上的天然屏障。对于很多一线的业务同学并不能第一时间数据的输出。例如,一个新入职的产品要做产品首页的改版,想先分析下目前页面各个流量入口的点击与转化情况,只能去问其他的PM或者去找数据同学,流量数据是哪个数据表,事件埋点规则又在哪里?

2)数据不敢用
数据处理逻辑不清楚,业务找到了订单数据在XX表中,但是对订单状态的枚举值含义不清楚,或者不知道营收的数据计算口径,不敢用,只能咨询表的负责人。

数据质量问题,搞数据的人都知道数据质量是数据团队的生命线,但是却又是无法避免的老大难问题,故障出得多了,用户拿到数据的第一反应是先和数据人员确认下,今天数据没问题吧。

管数据,主要是数据开发者,他们的目标是让自己生产的数据可以更安全地被更多人复用,在实践过程中,面临的问题主要是以下几种。

1)用户咨询多
用户用数据找不到或者找到了数据不敢用,就只能向数据负责人进行咨询,不同人的相同问题,或者不同问题。每天处理用户问题可能就要花个几个小时。

2)数据复用低
数据中台建设要解决的也是数据复用问题,对于数据工作者经常遇到做好了数据模型使用者寥寥无几的问题,有酒香但巷子深无人知晓的因素,也有部门墙、数据安全限制因素。

3)价值感知弱
数据开发者做了很多的数据模型,但不知道有多少人在使用,用到了哪里,产生了多少业务价值。数仓开发不生产数据,只是数据的搬运工,“工具人”的感受强烈。

4)问题排查路径长
用户反馈数据异常时,需要翻代码,对数据加工链路进行追根溯源,排查路径长,消耗时间久。

5)工作评估难

作为数据管理者,对于资产最关心的莫过于建设的怎么样,如何评估数据工作的成果。做了很多的数据模型,绩效就应该好吗?

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 申请试用

预约演示

您好,商务咨询请联系

咨询热线:400-0011-866