可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
2024-06-13
(1)传统数据分析
数据规模不大,但是数据质量比较高,数据分析的目的是,从典型样本数据中,发现数据背后的知识或规律,解决实际问题。
(2)大数据分析
不强调数据的质量,只要数据规模足够大,哪怕数据看起来杂、乱,也能从中挖掘出非常有价值的信息。大数据分析没有“数据样本”的概念,做的是全数据、全维度分析的事情,因此通常可以挖掘到更多、更全面的知识规律。大数据分析有一套特殊的技术框架,专门用来解决数据量大(分布式技术)、数据格式不统一(非结构化存储)等技术问题。