在数据智能运用的道路上,数据烟囱、信息孤岛遍布。由于顶层设计的缺失及历史原因,企业的各个业务系统、管理系统等的数据壁垒问题严重。另外,由于所用技术不同、开发团队水平不一、开发平台和工具不统一、缺乏规范的数据管理标准,各个系统间的数据难以兼容及集成。数据无法共享,造成一定的数据存储成本及数据管理成本的浪费。因此,对于
数字化转型企业来说,追溯数据来源、统一数据定义、分类数据存储、消除无效数据,可以降低数据管理成本,规避数据应用的法律风险,降低产品维护及开发成本。那么应该如何正确治理数据呢?
一、数据治理四个阶段
第一阶段,梳理企业信息,构建企业的数据资产库。首先要清楚企业的数据模型、数据关系,对企业资产形成业务视图、技术视图等针对不同用户视角的展示。
第二阶段,建立管理流程,落地数据标准,提升数据质量。从企业角度梳理质量问题,紧抓标准落地。
第三阶段,直接为用户提供价值。本阶段依赖于前两个阶段的建设,为用户提供方便的获取数据的途径。
第四阶段,为企业提供数据价值。通过多种手段对多种来源的数据进行分析,形成企业知识图谱,体现数据的深层价值。
二、正确数据治理流程
1、整理业务规则,统一数据定义
在企业数字化转型过程中,对数据的共同理解与解释至关重要。数据质量问题通常是指同一数据集被解释为不同事物,或者不同数据集被解释为相同事物。企业可令
数据治理团队运用一定的数据管理应用程序完成业务规则的梳理和数据定义的统一。
2、跟踪外部数据来源
企业数据应用的方向不再局限于内部数据,更多着眼于第三方数据,这是构成分析解决方案的要素之一。无论是合作伙伴数据、供应商数据还是互联网开放数据,都可以提升企业获取新业务价值的资源。
3、确认影响业务的关键数据指标
为了衡量一款产品及服务是否能够满足市场需求,必须采用一定的企业绩效指标。不完整、不准确的数据可能导致客户投诉。因此,客户流失率、KPI等数据指标的梳理及确定至关重要。
4、分析关键业务的数据质量
在梳理过程中,数据治理团队可以采用数据分析工具预测数据分析模型,在较短时间内了解数据质量。也可以创建针对数据存储库运行的脚本,解决高级别的跨应用数据分析需求。
5、创建数据自动化管理调控体系
数据治理团队应建立自动化管理体系,把关数据治理到数据应用的整个流程,在绩效考核、分析决策、基础数据质量之间建立明确的自动化反馈机制,以业务结果反馈数据治理效果。
6、检测数据质量对业务的影响程度
凭借专业的数据质量分析工具,数据治理团队能够测试数据质量,识别异常数据,以便开展有针对性的数据处理工作。通过业务影响程度测量数据质量,可以帮助企业有效筛查无价值数据,提高数据质量。
7、听取、沟通业务需求,有针对性地治理数据
数据治理团队在对数据进行清洗治理时,首先不要妄图通过数据治理立即解决所有问题,而是应该认真听取业务部门对数据的需求。通过有效沟通,确定行动计划,探索数据内部潜在的问题,为分析决策提供支撑。
8、创建数据质量动态感知台,监控数据治理进程
数据治理团队可以创建数据质量动态感知台。数据质量动态感知台可以根据KPI和关键业务操作流程制定数据质量的绩效。在某些需要调整的地方,数据业务分析师可以与CDO沟通调整治理路线和重点。
9、建立学习——分享——培训机制
团队负责人需要建立一套学习——分享——培训机制,团队成员可以将发现的数据问题及时共享给团队其他成员,一起讨论数据治理的解决措施,帮助团队成员提升自身能力。
10、避免“IT怪圈”
业务场景是瞬息万变的,用户的需求需要随时被满足,技术部门疲于应付前端业务部门低端的需求,导致业务需求响应慢,结果并不令人满意,甚至延误了商机。如此循环下去,技术部门将陷入IT怪圈,无法抽身。