可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
文|亿信华辰大数据知识库2022-05-27
数据治理专注在数据本身。数据治理的目标,是对数据质量进行提高,同时确保数据的安全性,推进数据资源的整合、共享进程。广义上讲,数据治理是对数据实现全生命周期管理。只要是为整个数据生命期而展开的业务、技术、管理活动,都属于数据治理的范畴,包括但不限于传统数据集成和存储环节的工作(如数据采集、清洗、转换等)、数据资产目录、数据标准、质量、安全、数据开发、数据价值、数据服务与应用等。
近些年来,“数据治理”这个词总是高频出现,让人们对其“身世背景”格外好奇。国际数据治理研究所(DGI)给出的定义:数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来执行,该模型描述了谁能根据什么信息,在什么时间和情况下,用什么方法,采取什么行动。
数据治理专注在数据本身。数据治理的目标,是对数据质量进行提高,同时确保数据的安全性,推进数据资源的整合、共享进程。广义上讲,数据治理是对数据实现全生命周期管理。只要是为整个数据生命期而展开的业务、技术、管理活动,都属于数据治理的范畴,包括但不限于传统数据集成和存储环节的工作(如数据采集、清洗、转换等)、数据资产目录、数据标准、质量、安全、数据开发、数据价值、数据服务与应用等。