一、什么是大数据分析?
大数据分析是指对规模巨大的数据进行分析。大数据具备以下特性:数据量大、速度快、类型多、价值、真实性。
二、大数据分析的基本方面
1、可视化分析
可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2、数据挖掘算法
集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3、预测性分析能力
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4、数据质量和数据管理
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
5、数据存储,数据仓库
数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。
6、语义引擎
由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从"文档"中智能提取信息。
三、如何让大数据分析更具价值?
1、快速建立分析模型
数据分析的目的是将数据变为信息,赋予数据生命力,解决业务的核心诉求。建立多维分析模型是将大数据进行场景化、即席化、可视化以及智能化的强大基础。
2、让数据驱动决策
数据真实的反映了事物的状态和变化,基于数据的决策更准确。我们要利用大数据分析为所有职场人员作出迅捷、高质、高效的决策,提供具有指导意义的洞察和可规模化的解决方案。
3、支持场景化分析
企业经营是由一个个具体的场景串联叠加的结果,对于企业经营而言,将分析深入到企业最基础的业务环节中,基于业务的因果分析甚至更为重要。
4、更短的响应时间
实时数据检索不仅可以降低成本、提高效率和可视化速度。企业不再局限于在数据仓库中划分的数据子集,而是可以更全面地收集和处理业务数据,使企业从原来被动的事后分析转变为主动的实时决策,并可以以此为基础创建基于预测的、而非基于响应的业务模型。