可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
文|亿信华辰大数据知识库2022-07-04
当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打通各个组织单元、实现业务单元快速重组的最根本的需求来源。
一、什么是数据治理
治为整治,关注数据质量,保障数据稳定性、准确性,合理控制数据的生命周期,降低成本。理为梳理和管理,数据的基本信息、状态、关联关系等,目标是搞清有哪些数据、从哪来到哪去,最终用到什么地方。所以,数据治理是一个过程,是一个从混乱到有序的过程。以服务组织战略目标为基本原则,通过组织成员的协同努力,流程制度的制定,以及数据资产的梳理、采集清洗、结构化存储、可视化管理和多维度分析,实现数据资产价值获取、业务模式创新和经营风险控制的过程。总体来说,数据治理的目标就是提高数据质量,将数据价值最大化。具体而言,数据治理的任务包括以下几点:
二、大数据面临的问题
大数据治理面临的问题虽然一些大型企业在信息化和自动化方面做得很好,但是在数据治理上仍然面临很多问题和困难。企业进行数据治理面临着三大问题:最大的问题是组织架构。从组织架构上,企业必须得有一个数据管理部,这意味着从公司层面足够重视。有效的组织架构是项目成功的有力保证,为了达到项目预期目标,在项目开始之前对于组织及其责任分工做出规划是非常必要的。其次是工具链条的缺失。企业做数据治理,效果往往不好,原因是什么呢?很多时候企业依赖人工,比如数据准备、数据标准等。最后一个问题是数据含义不清楚。虽然企业该有的数据都有,但是数据的业务含义是什么并不清楚,并且数据之间的标准也没有。因此,企业很难把数据利用好。
三、为什么要数据治理
大数据各个企业数据积累过程中,很多公司都注重了数据的“量”,很少有公司关注数据的“质”,仿佛只要有了海量的数据就可以解决所有问题。真实的情况是公司有了海量的数据,如果不能够保证一定的数据质量不但不能够解决问题,反而还会制造更多的麻烦,例如:企业数据标准、命名规则不一致、企业数据口径不一致(数据统计结果不一致)、统计结果重要数据缺失等,以上问题都会给企业的经营管理和市场洞察带来极大的挑战。要解决以上各种问题,只有通过数据治理才能够对不同的架构、跨不同业务领域平台提供一致的、可用的、安全的数据对象,真正的挖掘出企业的数据价值,来支撑经营管理,推动业务创新,从而为企业提供商业的竞争能力。
四、数据治理能带来哪些优势
1、标准化的数据资产管理方法、流程和策略,将有效提高数据运营效率;