可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
文|亿信华辰大数据知识库2023-02-23
数据质量管理对于处理低质量数据带来的问题是必要的。数据质量管理可以停止处理不准确数据浪费的时间和精力。低质量的数据可能会隐藏运营中的问题,并使合规性成为挑战。好的数据质量管理对于理解数据至关重要。它有助于为组织建立框架并支持数据质量规则。
数据质量的重要性
数据质量为什么至关重要?因为拥有高质量的数据可以更好地了解任何情况,从而更精准地执行任何事情。反之亦然。什么是数据质量工具
一个好的数据质量管理系统会使用有助于提高组织数据可信度的工具。数据质量工具是用于识别、理解和纠正数据缺陷的流程和技术,支持跨运营业务流程和决策制定的有效数据治理。数据质量工具包括一系列功能,例如数据清理、数据监控、数据剖析、数据解析、数据匹配、数据标准化、数据丰富等。