- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
时间:2018-12-20来源:互联网探索者浏览数:1407次
BI是商业智能的简称,商业智能是指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。这么一看,大家也许会想,商业智能和大数据是不是一样的。
实际上,BI(商业智能)与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
BI是商业智能的简称,商业智能是指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。这么一看,大家也许会想,商业智能和大数据是不是一样的。
实际上,BI(商业智能)与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
BI商业智能是做什么的
商业智能的作用体现在三方面,分别是销售分析、商品分析、人员分析。
(一)销售分析
主要分析各项销售指标,例如毛利、毛利率、交叉比、销进比、盈利能力、周转率、同比、环比等等;而分析维又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;同时根据海量数据产生预测信息、报警信息等分析数据;还可根据各种销售指标产生新的透视表。
(二)商品分析
商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过D系统对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。
(三)人员分析
通过D系统对公司的人员指标进行分析,特别是对销售人员指标(销售指标为主,毛利指标为辅)和采购人员指标(销售额、毛利、供应商更换、购销商品数、代销商品数、资金占用、资金周转等)的分析,以达到考核员工业绩,提高员工积极性,并为人力资源的合理利用提供科学依据。主要分析的主题有,员工的人员构成、销售人员的人均销售额、对于销售的个人销售业绩、各管理架构的人均销售额、毛利贡献、采购人员分管商品的进货多少、购销代销的比例、引进的商品销量如何等等。
商业智能系统需要在现行管理信息系统较为成熟的基础上应用,这样才能起到事半功倍的效果。企业使用商业智能前,最好有信息化搭建经验,或者在信息化搭建初期应用商业智能系统。
上一篇:企业为什么需要商业智能?...
对分析表中的数据进行补录或修改
在可视化建模的同时同步完成ETL流程设计
可任意制作酷炫灵动的图标和大屏
只需简单拖拽维度和指标即可生成相应的分析图表
让繁琐复杂的数据挖掘过程变得简单易用