睿治

智能数据治理平台

睿治作为国内功能最全的数据治理产品之一,入选IDC企业数据治理实施部署指南。同时,在IDC发布的《中国数据治理市场份额,2022》报告中,蝉联数据治理解决方案市场份额第一。

业务词汇表和元数据:数据治理和词汇表准备

时间:2018-12-21来源:数据治理浏览数:447

我经常被问到“我们如何捕获数据词汇表资产”和“我们是否已准备好与数据管理员合作?”我的回答始终是:如果您能说明数据治理计划的目标并拥有赞助组织,那么您很可能已准备就绪 在回答How,When和Where问题之前,您需要回答Why,What和Who的问题。我相信很多DG团队都会错误地花费太多时间准备进行数据治理,然后做得不够。现在肯定“Just Do IT”也不是正确的方法。但是,在开始捕获资产之前花一两年时间制定政策,标准,工作流程和流程也不是答案。让我们讨论一下入门所需的内容。
虽然已经发布了一些数据治理成熟度模型,但这些模型并不是非常实用,无法帮助回答这个问题。事实上,组织在不成熟的级别(零级)开始他们的数据治理实现是否有意义?领导者提出的另一个想法是,只有在数据治理原则,政策和运营模式获得批准后才能开始。很好的想法,但这对于商业赞助商来说通常需要很长时间。同样地,在没有数据策略的情况下进行即时关键项目通常会带来一次性的惊奇。很快就没有能力实现采用。我们相信这个问题的答案取决于您组织的数据治理策略和业务案例优先级。两者都是必要的,可以在几个月内完成。

一个开始的地方可能是回答“我们为什么需要数据治理,我们今天所做的事情有什么问题?”这一问题。数据治理的目标可以通过一些数据原则单独确定。然后将答案标识为特定业务用例,通常将其分组为以下列表:

定义或语言使用不一致 - 我们为每个团队,业务线,地区或国家/地区使用不同的术语来表示我们的数据。这可能会产生错误的报告,通信问题,不一致的管理决策以及额外的培训成本。这通常会通过捕获与单个数据集市或少量报告关联的资产来推动用例启动数据治理。用例只需要一小组治理流程和资源即可开始使用。

权威来源挑战 - 我们的数据消费者不清楚他们应该将哪些数据来源用于业务流程或报告和分析。对于此用例,我们可以选择一小组业务流程或分析来开始使用。
     缺乏业务流程 - 这可以说明,因为我们对数据生命周期中使用的流程没有共同的看法。我们有重复的处理,增强下游数据,在多个流程中修复数据质量,并使用错误的数据进行报告。对于此用例,我们可以在一个业务单位中使用单个业务功能建立数据治理。后续迭代将建立在治理流程之上。
     什么是“准备好”?
希望您同意我的意见,即在您拥有数据策略后,您已准备好进行数据治理实施。您至少需要一个章程和赞助组织,为您的数据治理计划提供愿景。然后,您可以与业务团队联系以确定用例,确定用例的优先级,进一步定义管理组织,并为您的实现创建路线图。然后,务实的问题变成了特定用例需要的详细要求才能开始?
我建议,基于我们许多成功的客户,它可以是非常小的。让我们认识到企业需要解决当今的挑战。我看到公司设定了数据治理计划将衡量并推动对流程结果,责任和责任决策,语言和术语一致性,技术一致性,数据使用改进,参考和主数据一致性以及质量指标测量的合规性的期望。一旦您开始制定路线图,而不是在开始之前,大多数努力都可以实现。实际上,在准备实施之前,必须执行两个步骤。首先是数据策略。二,业务用例。
我建议数据治理程序最好从以下定义开始。
数据治理章程,目标,风险,成功衡量(为什么) - 这通常被视为数据战略的一个组成部分。记录数据治理的高级目标,数据的风险以及程序如何衡量成功至关重要。对于组织中的每个人来说,理解为什么围绕资产治理的努力正在发生以概念化他们的贡献是非常重要的。采用数据治理始于“宪章”定义。
     数据治理领导组织(谁) - 这通常是一个3级组织结构。顶部是一个跨职能的执行领导委员会。接下来,一个跨职能的管理工作团队。最后,一个由SME和数据管理员组成的职能运营级别团队。识别个人入门并不重要。
     基本治理流程和操作流程(其中) - 基本了解“什么”治理流程,工作流程和操作流程有助于建立对每个业务和技术单元所需的操作和职责的期望。在选择技术之前,请不要担心操作模型的细节。该技术平台将加快您的上市时间并定义您的流程细节。
     治理路线图和通信流程(何时) - 可以忘记的一个领域是规划推广活动。不要让这种情况发生。预计推出的路线图通常是必要的,因为它确定了领导团队已经同意的优先事项。许多组织从第一次实施中迭代地构建其路线图。
     传播和教育计划(内容) - 传播计划和教育计划的重要性不容小觑。这两个计划都必须用于创建对数据治理和正确使用受管数据的流程和实践的认识,理解和参与。
     自适应和灵活的技术(如何) - 数据治理团队可以非常快速地开始构建业务术语表。您可以从Excel或Wiki开始,但这些工具不能很好地扩展。您将需要一种高度灵活的技术,以便在未来进行扩展,并且能够快速适应变化。您可以依赖的一件事是需要敏捷并适应不断变化的业务需求。您的技术不能成为限制您快速响应变化的能力的借口。
     数据治理应该使用正确的技术,在正确的时间,使正确的人员,正确的数据使用正确的流程。为了最大化业务所需的数据治理价值,您需要尽快开始。数据治理实现必须是迭代和敏捷的,所以让我们在考虑这些方法的情况下启动程序。深呼吸,保持冷静,并让您的数据治理计划繁荣。

(部分内容来源网络,如有侵权请联系删除)
立即申请数据分析/数据治理产品免费试用 我要试用
customer

在线咨询