- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
时间:2022-11-01来源:蝴蝶与蓝浏览数:114次
数据质量因素对于企业数据应用有着至关重要的影响,无论是横向的数据相关运营活动,还是纵向深入的数据分析挖掘实现。数据质量管理是企业数据管理中的一项关键内容,与数据治理、数据标准、元数据、主数据等管理职能相互交叉,并且是数据服务、数据分析、数据挖掘等活动的必备支持条件。
数据资产越来越受到各行各业的重视。银行业作为与数据最密不可分的行业之一,在“数据要素化”的市场推动下,势必要先行一步体现数据的使用价值。伴随外部监管要求逐步提高以及市场竞争环境的日益激烈,银行对于数据价值的重视提升到了前所未有的高度。与此同时,银行业务重点变化、金融业务联动甚至企业合作都对数据管理提出了更高的要求,尤其是整合多种数据源、创建一致的数据副本,以及提供灵活的数据查询需求。在这些要求中,数据质量因素对于企业数据应用有着至关重要的影响。