- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
时间:2023-01-30来源:他夫人浏览数:304次
数据治理体系内容从两个维度来看:
1)数据治理难点痛点:数据脉络不清晰、数据汇聚能力不足、数据管控能力薄弱、数据治理体系不完善、开放形式不完善。
2)数据治理5个核心:理、聚、管、治、用。
数据治理体系主要包含内容有数据标准、元数据、数据建模、数据集成、数据生命周期、数据质量、数据开放、数据安全及数据应用。
2.2、元数据分类 业务元数据:描述数据系统中业务领域相关概念、关系和规则的数据;包括业务术语、信息分类、指标、统计口径等。(从业务角度描述的)
技术元数据:描述数据系统中技术领域相关的概念、关系和规则的数据;包括数据平台内对象和数据结构的定义、源数据到目的数据的映射、数据转换加工过程的描述等。
管理元数据:描述数据系统中管理领域相关概念、关系、规则的数据;主要包括人员角色、岗位职责、管理流程等信息。
2.3、元数据模型成熟度
1、第一阶段:需要手动管理元数据,即在数据治理流程外需要额外增加的步骤。
2、第二阶段:在数据探查阶段自动生成元数据。
3、第三阶段:自动构建数据流转元数据。
元数据管理方法:
元数据管理能力:
常见的数据标准包含基础数据标准和指标数据标准。
主要构成:业务定义+管理信息+技术属性
数据标准包含内容包括:主题&分类+标注属性+标准代码
不同行业的标准不同,这里仅是举例说明。
如:性别、身份证、金额、手机号码、行业、级别的分级分类的代码等
3.3、数据标准管理体系涉及思路 数据标准来源于业务,服务于业务。 依据已有标准进行建设
定义:分析类数据标准的业务含义和所适用的业务场景保持一致。
口径:分析类数据标准的业务取值范围、计算方法和编码规则等业务规则保持一直。
名称:分析类数据标准中文名称和英文名称均采用统一命名规则,表示相同业务含义的信息项名称应保持一直。
参照:各分析类数据标准项标准化时参考的外部标准(包括国际标准、国家标准和行业标准),内部业务制度和业务规范应保持一致。
来源:每个分析类数据标准都应有权威的来源系统;其他系统使用该信息时应直接取用权威系统结果,以保持一致。
以下为某企业数据标准体系框架示例,分为基础类数据标准和管理类数据标准
按照两个大的阶段来划分:数据治理规划阶段+数据生命周期管理阶段
业务规划定义阶段:业务规划、业务标准设计
应用设计实现阶段:数据模型设计、应用标准设计、应用设计实现、数据录入
数据生命周期管理阶段:数据创建:利用数据模型保证数据完整、执行数据标准保证数据准确、加入数据质量检查创建准确、保证数据在合理的系统生成;
数据使用:利用元数据监控数据使用、利用数据标准保证数据准确、利用数据质量检查加工准确、确保数据在合理的系统使用、控制数据的派生;
数据归档:利用评估手段保证归档时机、分数据类型规档数据;
数据销毁:利用评估手段保证数据销毁时机,分数据类型销毁数据。
要求:满足对历史数据查询相关政策和管理制度的要求
满足业务操作和管理分析的需要
满足审计管理要求
减少数据冗余,提高数据一致性
存储、硬件、运维等方面基础设施投入
提升应用系统性能,提高响应速度
6.2、管理要求和手段
数据资产的应用实现方式,打通基础数据链条,实现联通协同,提升数据价值
数据资产生命周期:注册、变更、监控、下线
数据服务技术架构:
离线数据:
使用场景:
下一篇:数字化中台解决方案...