首页 行业百科 常用数据分析方法

常用数据分析方法

|亿信华辰大数据知识库2022-04-26

常用数据分析方法

数据分析是产品经理必备技能之一,在产品需求阶段可以通过数据分析对用户的需求去伪存真,在产品上线运营阶段,又可以通过数据验证产品的可行性并且进行迭代。所以产品经理要掌握常见的数据分析的方法。

数据分析是产品经理必备技能之一,在产品需求阶段可以通过数据分析对用户的需求去伪存真,在产品上线运营阶段,又可以通过数据验证产品的可行性并且进行迭代。所以产品经理要掌握常见的数据分析的方法。
一、数据分析方法
1、信度分析
检查测量的可信度,例如调查问卷的真实性。
1)内在信度:每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度;
2)外在信度:不同时间测量时量表的一致性程度,常用方法重测信度。
2、描述统计
描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1)正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法;
2)缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
3、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
1)复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
2)偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关;
3)单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量。
4、列联表分析
用于分析离散变量或定型变量之间是否存在相关。对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
5、方差分析
使用条件:各样本必须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
1)单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系;
2)多因素有交互方差分析:一项实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系;
3)多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系;
4)协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法。
6、聚类分析
样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等;
Q型聚类分析:对样本进行分类处理,又称样本聚类分析使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等。
7、因子分析
一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法。
8、主成分分析
将彼此相关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。
9、时间序列分析
动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型。

二、数据分析工具
一个优秀的数据分析师,必须会BI工具,必须懂数据仓库,甚至还得知道大数据平台建立的全过程。亿信ABI作为一款轻量级的数据分析工具,真正做到了解放IT,业务主导。
亿信ABI一站式数据分析平台,是亿信华辰历经十五年匠心打造的国产化BI工具,技术自主可控。它打通从数据接入、到数据建模与处理、再到数据分析与挖掘整个数据应用全链路,可满足企业经营中各类复杂的分析需求,帮助企业实现高效数字化转型。
认为本内容有帮助
0
您可能需要的数据产品
亿信华辰助力政企数字化转型
customer

在线咨询