可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
文|亿信华辰大数据知识库2022-05-18
数据治理是所有数据应用的基础和根基,它的好坏直接影响数据应用过程中的价值体现。同时,数据治理也是一个组织进行数据资产沉淀的基础,直接决定了一个组织的数据资产能否得到有效的沉淀,以及在数据应用过程中能否充分发挥数据价值。
数据治理是所有数据应用的基础和根基,它的好坏直接影响数据应用过程中的价值体现。同时,数据治理也是一个组织进行数据资产沉淀的基础,直接决定了一个组织的数据资产能否得到有效的沉淀,以及在数据应用过程中能否充分发挥数据价值。
数据治理(DG,Data Governance)是指对数据资产的管理活动行使权力和控制的活动集合(规划、监控和执行)。作为DAMA数据管理职能框架的10项职能之一,起着指导其他数据管理职能如何执行的作用,它通过制定正确的政策、操作规程,确保以正确的方式对数据和信息进行管理。数据治理应覆盖大数据的获取、处理、存储、安全等环节,需要为大数据设置数据管理专员制度;需考虑大数据与主数据管理能力的集成,需要对大数据做定义,统一主数据标准;在数据生命周期管理各阶段,如数据存储、保留、归档、处置时,要考虑大数据保存时间与存储空间的平衡,大数据量大,因此应识别对业务有关键影响的数据元素,检查和保证数据质量。此外,在隐私方面,应考虑社交数据的隐私保护需求,制定相应政策,还要将大数据治理与企业内外部风险管控需求建立联系。
7、建立统一的数据标准。目前存在各业务部门标准不统一,部门之间数据标准矛盾或者相互混淆的情况,导致部门间数据交换,数据共享比较困难。建立统一的数据标准有助于对数据进行统一规范的管理,消除各部门间的数据壁垒,方便数据的共享,另外数据标准同样对业务流程的规范化有帮助作用。