可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
文|亿信华辰大数据知识库2022-07-13
IT应用类型、数据源、数据分析方法不断增加,数据治理进入了一个新的变革和发展阶段。面向大数据的数据治理,应该具有更高的能动性,需要跟上更快的IT环境变化速度,做出积极的反应。可以说,在新的发展阶段,数据治理的各项要求将变得更加具有挑战性。
大数据治理必须跟踪跨多个平台的数据访问和使用情况,并减轻数据使用不当造成的风险。在大数据环境中,验证数据源并确保数据质量和数据完整性成为一个巨大的挑战;此外,海量数据的存储、如何最大化数据处理效率、保证数据可靠性与安全性也更具难度。
IBM认为,数据治理是指一个质量监控规范,它将严密性和纪律性植入组织的信息管理、使用、改进和保护过程中。通过促进跨组织合作和结构化决策,有效的数据治理能够提高一个组织的数据质量、可用性和完整性。
目前,大多数企业的信息化建设初期缺乏整体规划,大多都是以业务部门驱动的单体架构系统或套装软件,数据分散在这些架构不统一、开发语言不一致、数据库多样化的系统中,导致在企业内部形成了一个个的“信息孤岛”。