首页 亿信华辰大数据知识库 如何搭建数据治理平台?

如何搭建数据治理平台?

|亿信华辰大数据知识库2022-11-04

如何搭建数据治理平台?

随着信息技术的普及,人类产生的数据量正在以指数级的速度增长,如此海量的数据就要求利用新的方法来管理.数据治理是将一个机构(企业或政府部门)的数据作为战略资产来管理,需要从数据收集到处理应用的一套管理机制,以期提高数据质量,实现广泛的数据共享,最终实现数据价值最大化.目前,各行各业对大数据的研究比较火热,但对于大数据治理的研究还处于起步阶段,一个组织的正确决策离不开良好的数据治理。数据治理的重要前提是建设统一共享的数据平台。

随着信息技术的普及,人类产生的数据量正在以指数级的速度增长,如此海量的数据就要求利用新的方法来管理.数据治理是将一个机构(企业或政府部门)的数据作为战略资产来管理,需要从数据收集到处理应用的一套管理机制,以期提高数据质量,实现广泛的数据共享,最终实现数据价值最大化.目前,各行各业对大数据的研究比较火热,但对于大数据治理的研究还处于起步阶段,一个组织的正确决策离不开良好的数据治理。数据治理的重要前提是建设统一共享的数据平台。


一、数据治理的理解
数据治理是专注于将数据作为企事业单位数据资产进行应用和管理的一套管理机制,能够消除数据的不一致性,建立规范的数据应用标准,提高数据质量,实现数据内外部共享,并能够将数据作为组织的宝贵资产应用于业务、管理、战略决策中,发挥数据资产价值。

狭义上讲,数据治理是指对数据质量的管理、专注在数据本身。广义上讲,数据治理是对数据的全生命周期进行管理,包含数据采集、清洗、转换等传统数据集成和存储环节的工作、同时还包含数据资产目录、数据标准、质量、安全、数据开发、数据价值、数据服务与应用等,整个数据生命期而开展开的业务、技术和管理活动都属于数据治理范畴。


二、数据治理平台主要模块

1、主数据管理:主数据管理是通过运用相关的流程、技术和解决方案,对企业核心数据的有效管理过程。主数据管理涉及主数据的所有参与方,如用户、应用程序、业务流程等,创建并维护企业核心数据一致性、完整性、关联性和正确性。主数据是企业内外被广泛应用和共享的数据,被誉为是企业数据资产中的“黄金数据”,主数据管理是撬动企业数字化转型的支点,是企业数据治理最核心的部分。
2、元数据管理:元数据管理是对企业涉及的业务元数据、技术元数据、管理元数据进行盘点、集成和管理,按照科学、有效的机制对元数据进行管理,并面向开发人员、最终用户提供元数据服务,以满足用户的业务需求,对企业业务系统和数据分析平台的开发、维护过程提供支持。借助变更报告、影响分析等应用,控制数据质量、减少业务术语歧义和建立业务和技术之间的良好沟通渠道,进一步提高各种数据的可信性、可维护性、适应性和可集成性。
3、数据标准管理:数据标准适用于业务数据描述、信息管理及应用系统开发,可以作为经营管理中所涉及数据的规范化定义和统一解释,也可作为信息管理的基础,同时也是作为应用系统开发时进行数据定义的依据。涉及国家标准、行业标准、企业标准和地方标准,在定义元数据实体或元素时进行关联。数据标准需要不断的补充完善、更新优化和积累,以便更好的支撑业务的开发和系统的集成。
4、数据质量管理:建立数据质量管理体系,明确数据质量管理目标、控制对象和指标、定义数据质量检验规则、执行数据质量检核,生产数据质量报告。通过数据质量问题处理流程及相关功能实现数据质量问题从发现到处理的闭环管理,从而促进数据质量的不断提升。

5、数据安全管理:数据安全应贯穿数据治理全过程,应保证管理和技术两条腿走路。从管理上,建立数据安全管理制度、设定数据安全标准、培养起全员的数据安全意识。从技术上,数据安全包括:数据的存储安全、传输安全和接口安全等。当然,安全与效率始终是一个矛盾体,数据安全管控越严格,数据的应用就可能越受限。企业需要在安全、效率之间找到平衡点。


三、数据治理需要注意哪些问题
1、投资决策的困难
组织的投资决策以能够产生可预期的建设成效为前提,但往往综合性的数据治理的成效并不能立马体现,它更像一个基础设施,是以支撑组织战略和长期发展为目标,所以,导致此类项目无法界定明确的边界和目标,从而难以作出明确的投资决策。
2、跨组织的沟通协调问题
数据治理是一个组织的全局性项目,需要IT部门与业务部门的倾力合作和支持,需要各个部门站在组织战略目标和组织长远发展的视角来看待数据治理。因此,数据治理项目需要得到组织高层的支持,在条件允许的情况下,成立以组织高层牵头的虚拟项目小组,会让数据治理项目事半功倍。
3、技术选型
这几年随着大数据的发展,有针对传统数据库的,有针对大数据数据库的,再加上组织对自身数据资产情况没有一个清晰的认识,这也就导致了数据治理的技术选型困难。
4、工作的持续推进

数据治理是以支撑组织战略和长远发展为目标,应当不断吸收新的数据来源,持续追踪数据问题并不断改进,所以数据治理工作不应当是一锤子买卖,应当建立长效的数据改进机制,并在有条件的情况下,尽量自建数据治理团队。


四、如何做好数据治理
1.制定数据标准,优化流程
对企业来说,数据有很多来源。金融、人力、供应链、生产、销售等内部数据;政策、经济、社会、科技、产业、市场、竞争者等外部数据。尽管数据来源广泛,数据量大是其优势,但如果不加以整理,混乱的数据不但不利于分析应用,而且会造成不必要的财产损失。所以企业应建立统一的数据标准、数据管理流程和系统,以规范数据生产与供应过程。
2.搭建平台
对于数据治理平台的搭建,企业需要考虑用户的不同需求,从而建立不同的模块。数据治理平台的内容主要包括数据质量管理、数据标准管理、数据安全管理、数据模型工具、元数据管理、主数据管理等功能模块。我们所说的数据治理项目不是为治理数据而构建,而是与大数据平台、数据仓库、数据分析挖掘等项目相结合,通过提高数据质量、控制数据安全性,使数据发挥最大效益。
3.优化模型,确保数据安全
数据安全管理是从数据资产整理开始的。将数据资产进行整理分类,可以明确敏感数据在系统内的分布情况,判断敏感数据是如何被访问的,以及确定当前账号和授权的状态。依据数据价值和数据特性,对企业的核心数据资产进行分类,利用数据治理工具将其模型化,确定敏感数据的位置、描述和处理方法,确保数据的合法合规地使用。
五、睿治数据治理平台
睿治一套完善的,通过的数据治理工具,是由亿信华辰自主研发的,融合实时计算存储、元数据管理、数据标准管理、数据质量管理、数据集成管理、主数据管理、数据交换管理、数据资产管理、数据安全管理、数据生命周期管理十大产品模块,打通数据治理各个环节,各产品模块可独立或任意组合使用,快速满足政府、企业各类不同的数据治理场景。
认为本内容有帮助
0
您可能需要的数据产品
亿信华辰助力政企数字化转型

预约演示

您好,商务咨询请联系

咨询热线:400-0011-866