- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
企业级多智能体平台,低门槛搭建智能体,灵活编排流程,融合 LLM 实现“问数”、“问知识”
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
时间:2020-02-21来源:知乎浏览数:726次
而银行数据治理,有两件事情非常棘手,一个是有些系统陈旧,文档少,没人讲的清楚具体业务怎样纪录数据,也有一些系统中比较冷门的业务可能也存在类似情况,无从谈起数据治理了,当然这样情况是少数,对全行数据治理影响不大。另一个情况是银行内部按照业务部门组织系统,数据分属各个业务部门,其中利害关系复杂,没有大的魄力很难在数据治理上有太大成果。
最近也在做数据治理相关一些工作,要做好数据治理,应该要解决好如下一些问题。亿信华辰在中国农发行数据治理咨询和数据平台实施的方案中,
建设内容:覆盖全行主要业务系统数据,建设数据质量检核系统,建立基础标准和指标标准框架,搭建数据仓库模型框架,全面推动数据治理工作的开展。
项目价值:对全行数据质量进行全面监控和检核,提升数据质量,实现全行数据的统一、规范化管理,优化加强数据架构和模型管理,提高数据可用性
下一篇:从元数据角度来认识大数据...
全面覆盖数据治理9大领域,采用微服务架构,融合度高,延展性强
实现数据从创建到消亡全生命周期的可视化,也实现全角色的可视化
丰富的智能元素和功能,大大缩短数据管理周期、减少成本浪费




