亿信华辰

连续4年稳坐商务智能应用榜首

与此同时,亿信华辰在数据治理领域也获得殊荣,摘得榜眼

首页关于行业资讯数据治理

数据中台对企业的价值在哪里?

时间:2021-01-23来源:知乎浏览数:15

原来我们在做一张报表,或者是在业务系统里面需要查询一个数据结果的时候,它的过程是比较麻烦的,而且它的测试往往也是比较复杂的,因为业务系统是有业务属性的,但是数据是跨业务的,是融合的。在ORAP领域中,很多这种情况,比如说我的企业,Java开发工程师很好找,做应用的人很好找,懂data,知道如何做数据建模,如何做算法的人相对来讲是比较少的。但是在我们应用开发过程当中,我们会发现有太多的数据需求,这种情况下应用开发的速度是快于数据开发的速度。
这是第一点。

第二点,在很多时候我们会发现不同的应用开发项目组,他们都会调用同样的数据模型,同样的数据服务,但是由于不了解数据,并且他们也不知道底层的数据结构,所以他们不同的项目组可能对同样的数据处理会用不同的方法,自己做自己的,然后出来的结果不一样。有的是错误的,所以开发速度慢,并且数据结果不准确,质量低,这就是过去应用开发和数据开发所面临的矛盾。但是现在数据中台就要解决这个问题,数据中台要把那些复用的数据模型,要把那些数据模型data派对中一些数据复用的能力,变成一个数据的能力平台,让那些做数据的人专注在做数据,把数据变成一个乐高积木,数据服务提供给应用开发,然后不同的应用开发项目组可以共同的去调用唯一的SARS数据服务,去保证它的数据质量和一致性。
所以数据中台的价值是什么?加速从数据到价值的服务产生过程,打造高响应力且更加智慧的业务。所以我们再回顾一下,数据中台解决的核心问题是什么?第一,解决应用开发快于数据开发的效率问题。第二,解决数据开发与数据产生价值的协作问题。第三,解决在很多企业,它的开发人员,技术人员没有数据能力的问题,这是它从技术层面的核心问题上来解决问题。
那是不是一定要做到保证数据质量百分之百,在没有问题的情况下,才能够去做数据系统,才能去做数据服务。从这点上来讲,实际上数据和业务之间的速度一直是不一致的,我们的业务永远比这个系统的开发速度要快。就是我们物理世界里的业务一定比你的软件的开发要快。然后软件从软件本身到沉淀出数据,这又是一个滞后的过程。所以数据与你的企业的业务一定是不一致的。数据的及时性,数据的一致性和数据的集成性问题,在某种角度上来讲,它是不可能百分之百彻底解决的,除非你的业务是静态的,因为你的业务呈现是在变化的,你的用户天天在变,我们的业务部门天天在思考创新,天天在希望找到新的客户的模式,这一切的创新落地下来就是数据,你的数据时时刻刻在发生变化,就是说,有的企业的业务报表系统上线以后,上线两个月很好,上线到第三个月的时候就发现报表不对了,而且他也不知道问题在哪里,然后他就需要去查看整个的过程,因为数据系统它有很强的不确定性,因为它的来源控制不了,它的来源是来自于它的业务系统,然后业务系统是变化的。

如何加快从你的业务到数据到你的数据产品之间的反馈的速度响应力,也是数据中台要解决的问题。它要把应用的价值,应用的速度,和你数据产生的速度中间的差异,时间的差异和有时候业务理解上的差异,通过数据中台去把它弥补起来。

在这里这个图,我们把它定义成是现在数据驱动的智能企业的一个模型,然后我们可以看到这里面有六大功能,其中除了灰色的部分,我们认为是传统的数据平台提供的功能。那么之外的这五大功能,我们认为这就是现在企业里面所讲的数据中台所应该具备的能力。

如果有一个数据中台所谓的厂商找到大家说我们给大家提供数据中台,我们可以对比一下,他有没有现在所讲的五个功能,五大领域的功能:第一,数据资产的规划和治理。你有什么数据资产要存什么数据,这个东西一定是要有统一的规划的,而且是要有系统经营管理的,所以每一个数据中台一定要有一个数据资产目录。至于数据资产目录是长什么样子的,要怎么去构建,那么在其他的topic里面我们去讨论,这里就不详细去讲。

第二,数据资产的采集、获取和存储。这就是传统的数据库数据仓库所做的事情。

第三,数据资产的共享和协作。数据仲裁很重要的一个功能是让企业的数据,企业拥有的数据,能够在内部开放,对你的生态开放,对你的用户,对你的员工开放,对你的数据的消费者开放共享和协作。在很多时候我们看到有些企业,他自己的部门之间都不清楚他企业有哪些数据,数据在哪里,有什么价值,如果这一点数据中台解决不了,那它就不能称之为是一个完整的数据中台。这个是怎么去做的?我们把它叫data is great。就是数据探索的平台。

第四,数据业务价值的探索和分析。数据中台一定要有一个能力,就是除了存储数据,然后管理数据资产之外,它一定要能够提供面向用户的这种价值探索工具。让用户,让不同层面的用户,比如说有数据分析人员,有业务分析人员,让他们能够在数据中台提供的工具里面去探索业务价值。比如说我们现在在研发,当然行业里面有很多也有这样的系统,它能够让你把你企业里的数据服务,同你企业的数据集放在一起,然后让业务部门,让你的业务人员做self service,自己去探索这些数据集,发现它的业务价值,我们把它叫做date night。然后当你发现这个数据集很有价值,对你的业务很有帮助的时候,数据中台能够提供一个能力,那就是快速的把这些数据数据集以一种合适的方式发布成数据服务。

第五,数据服务的构建和治理。当然这个数据服务一定是要有治理的,不能出现数据服务重重叠叠,然后浪费好多服务放在那里没有人用,所以这是第五点数据服务的构建和治理。

第六,数据服务的度量和运营。数据类的项目一定是一个持续的项目,它一定是不断迭代不断分析的项目,它不仅仅是说我产生完数据我就完事了,或者说我把数据报表开发出来我就不管了,一定不是这样,所有数据的项目都是要持续的去运营的,运营的目的是什么?运营的目的就是去看我产品数据服务是有谁在用?他们用的反馈如何?哪些报表,哪些数据产品没有人用,,哪些产品它是可以合并的?使用这些产品的用户画像是什么?他们有什么特点?如何更好地为他们提供服务,这就是我们所讲的数据产品的运营。所以数据中台一定要具备数据产品运营的能力。

我们可以看到刚才我们所讲的这六大功能,在这个数据服务工厂里面都能一一得到映射。刚才我们所讲的是一个广义的数据中台,然后同时我们现在在很多企业里面,我们也会看到,有的企业它不可能一上来就构建一个这么庞大的数据服务工厂,如果他要做数据平台,它先做什么?他现在可能连数据湖都没有,数据平台也没有。那怎么办?他还要不要做数据中台?我们所讲过的,只要你的前台业务系统有多个,而且你希望你的数据服务未来是可复用的,被多个业务系统所使用,提供平台性的能力的话,你就要构建数据中台。那么你的数据中台可以简单到它就是只提供一个data API,哪怕它后面没有数据库,没有数据湖,没有数据平台,然后是人去维护一个excel表,然后把这个excel表的数据变成一个data API让业务部门去调用,我们觉得这就是数据中台的一个核心,那就是提供数据服务。所以我们所讲狭义的数据中台,那就是数据服务data API。
dataAPI和传统的数据报表很大的区别在于数据报表是单向的,是人机接口,人看报表。数据API是什么数据?API是可被监控的,是可被调度的,它是一个机器与机器之间的接口,是由你的电脑,你的应用去消费数据,不是由人去看数据

所以这是很重要的,数据服务是我们所讲的狭义的数据中台最重要的部分。如果你要做一个最简单的数据中台,那么很简单,你只需要去把你的数据变成服务提供给你的多个业务用户,或者是你的多个业务系统,它就可以被称之为一个数据中台。

我们来总结一下,数据中台和数据仓库,数据湖传统的区别。数据中台距离业务更近,数据平台、数据湖是被动地响应业务需求,用户说我要什么,然后你有什么数据,然后我来给你提供什么数据服务,但是数据中台是业务需求驱动的业务服务平台。比如说,现在很多企业在做数据中台规划的时候,第一件事情不是去看他的数据,他有什么数据,那是第二件事情,第一件事情先看他需要什么样的数据服务,什么样的数据对他有价值。

这里面我们可以再来把这几个关键的点总结一下,数据仓库、数据平台和数据中台的关键的关系。第一,数据仓库是分析报表及服务,数据平台和数据湖是提供数据集,我把一个数据集给到你,然后业务部门根据这个数据集拿到数据库的链接,自己去做开发。
快乐分享
© 2021 ESENSOFT 北京亿信华辰软件有限责任公司| 版权所有:京ICP备07017321号 京公网安备11010802016281号|免责声明

联系
电话

您好,商务咨询请联系

咨询热线:400-0011-866转0

手机咨询:137-0121-6790

社区
交流

产品技术问题交流

bbs.esensoft.com

9分钟快速处理问题