睿治

智能数据治理平台

睿治作为国内功能最全的数据治理产品之一,入选IDC企业数据治理实施部署指南。同时,在IDC发布的《中国数据治理市场份额,2022》报告中,蝉联数据治理解决方案市场份额第一。

30个数据可视化小技巧 !建议收藏!

时间:2025-08-20来源:爱数据LoveData浏览数:4

和数据打交道的朋友肯定经常会通过可视化的方式来呈现数据。在这里小编给大家总结了数据可视化制作的30个小技巧,通过列举一些容易被忽略的常见错误,希望最终能够快速提升和巩固你的可视化制作水平

你不得不注意的图表制作小技巧1、条形图的基线必须从零开始条形图的原理就是通过比较条块的长度来比较值的大小。当基线被改变了,视觉效果也就扭曲了。

2、使用简单易读的字体 有些时候,排版可以提升视觉效果,增加额外的情感和洞察力。但数据可视化不包括在内。坚持使用简单的无衬线字体(通常是Excel等程序中的默认字体)。无衬线字体即是那些文字边缘没有小脚的字体。

3、条状图宽度适度 条形图之间的间隔最好是1/2栏的宽度。

4、使用2D图形 虽然他们看起来很酷,但是3d形状可以扭曲感知,但是看上去会扭曲数据。坚持做一个2 次元,确保数据准确,挺好的!

5、使用表格数字字体 表格间距赋予所有的数字相同的宽度,使它们排列时能彼此对齐,使比较更容易。大多数流行字体都内置了表格。不确定字体是否正确?就看小数点(或任何数字)是否对齐就行。

6、统一感 统一感使我们更容易接收信息:颜色,图像,风格,来源……

7、不要过分热衷于饼图 展示多个区块比例大小,所有区块(圆弧)的加和等于 100%。但最好避免使用这个图表,因为肉眼对面积大小不敏感。自己好像就是犯了这个毛病

8、折线图中使用连贯的线条 虚线容易分散注意力。相反,使用实线和颜色,反而容易区分彼此的区别。

9、尊重部分所占整体的比例 在人们多选的问题上就会出现比例的重叠,不同选项的百分比之和大于一。为了避免这种情况,不能直接把比例做成统计图。相较于呈现数值,有些图更着重于表现部分与整体的关系。

10、面积、尺寸可视化 对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。

11.使用大小来可视化值 大小可以帮助强调重要信息并添加上下文提示,使用大小来表示值配合地图使用的效果也非常好。如果您的可视化中有多个大小相同的数据点,它们会混在一起,很难区分值。

12、使用相同细节 添加的细节(和数字)越多,大脑处理的时间就越长。想想你想要用你的数据传达什么,以及最有效的方式是什么。


13、使用基础图形 一个很好的经验法则是,如果你不能高效理解,你的读者或听众可能也难理解。因此,坚持使用基础图形:直方图、条形图、维恩图、散点图和线形图。

14、视图数量 将您的可视化中的视图数量限制为三到四个。如果您添加太多视图,大局会被详细信息所淹没。


关于图标配色,你可以参考的5条准则1、颜色深浅通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。

2、使用同一色系 颜色用得太花,会给数据增加不可承受之重,相反,设计师应该采用同一色系,或者类比色。

3、避免使用鲜艳的颜色 明亮鲜艳的颜色就像是把所有的字母都大写想要强调一样,你的听众感觉你在对他们大声推销。单调的颜色,反而能很好地用于数据可视化,因为它们可以让你的读者理解你的数据,而不至于被数据淹没。

4、标签使用不同颜色区分 在某些情况下,在一段时间或一系列的值中,我们可能测量了不同种类的物体。例如,假设我们测量 6 个月以来狗和猫的体重。在实验结束时,我们想画出每只动物的体重,分别用蓝色和红色区分猫和狗。

5、颜色数量 不要在一张图上使用6种以上的颜色;谨记谨记~



标准的可视化图表一定要有注解

1、解释编码 通过一定的形状、颜色和几何图形的结合,将数据呈现出来。为了让读者能读清楚,图表设计者就要把这些图形解码回数据值。

2、轴标签 这可能看起来没有必要,或者不是很有帮助,但是你无法想象,如果你的图表有点混乱,或者看到数据的人对此不是很熟悉,你会被问多少次 x/y 轴代表的是什么。按照前面的两个绘图示例,如果要为轴设置特定名称。

3、标题 如果我们要将数据呈现给第三方,另一个基本但关键的要点是使用标题,它和之前的轴标记非常相似。

4、重点元素做注释 通常情况下,仅仅在图表的左右两侧使用刻度本身并不是很清楚。在图上标注值对于解释图表非常有用。

5、重要视图位置 将最重要的视图放置在顶部或左上角。眼睛通常会首先注意到该区域。


优秀的可视化图表,遵守的6条原则

1、数据排序有序 数据类别按字母顺序,大小顺序,或价值进行排序,以一种合乎逻辑的和直观的方式来引导读者了解数据。

2、比较数据 比较是展示数据差异的好法子,但是如果你的读者不容易看出差别的话,那么你的比较就毫无意义。确保所有的数据都是呈现在读者面前,选择最合适的比较方法。

3、不可扭曲数据 确保所有可视化方式是准确的。例如,气泡图大小应该根据区域扩展,而不是直径。

4、展示数据 让读者看到数据,这是可视化的重点。确保没有数据丢失或被设计。例如,使用标准的面积图时,可以添加透明度,确保读者可以看到所有数据。

5、删除变量 很多时候,太多的信息会影响读者的注意,从可视化中删除隐含信息是一个好主意,在这种情况下,我认为我们不需要在轴中包含变量的名称。

6、避免数据噪音 把不重要的东西减到最少或者去掉。这包括减弱或移除图形线,改变轴线、图形线的颜色,以及用浅灰色描绘电子表格行。使得“数据比率”可以达到一个很高的水平,听众会更容易明白其中的数据情况。


(部分内容来源网络,如有侵权请联系删除)
立即申请数据分析/数据治理产品免费试用 我要试用
customer

在线咨询

在线咨询

点击进入在线咨询