可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
智能数据问答平台
查看详情
文|亿信华辰大数据知识库2022-03-17
数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。而数据治理就是挖掘这些价值的重要手段和工具。
数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。而数据治理就是挖掘这些价值的重要手段和工具。对于企业而言,借助数据治理,引领企业加快数字化转型,从而获取最大限度的价值。
一、数据治理的定义狭义上讲,数据治理专注在数据本身。数据治理的目标,是对数据质量进行提高,同时确保数据的安全性,推进数据资源的整合、共享进程。广义上讲,数据治理是对数据实现全生命周期管理,包括数据采集、数据清洗、数据转换等。除此之外,只要是为整个数据生命期而展开的业务、技术、管理活动,都属于数据治理的范畴,比如数据资产目录、数据标准、质量、安全、数据开发、数据价值、数据服务与应用等。
二、数据治理的意义
通过建立一致的企业数据模型,统一的组织数据的展示和利用,从而让业务人员能够更快的获取用户及产品相关数据,获得最快的市场信息和洞察,从而能够提升业务对于市场的响应力,让业务更敏捷。
三、数据治理策略