可免费试用30天
已有30000+人申请
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
文|亿信华辰大数据知识库2023-04-25
在“数据为王”的时代,金融大数据被誉为“待挖掘的金矿”,其价值已经成为共识。自从2014年大数据首次作为国家战略被写入政府工作报告,金融机构不断引入大数据分析平台、构建大数据体系。
金融:基于大数据分析的精准营销、实施管控、分析决策
相比其他行业,金融大数据分析起步早、技术高、发展快,国家对金融行业大数据发展整体秉持鼓励和支持的基调。一方面,出于对金融行业系统性和非系统性风险双重考虑,国家对金融大数据分析出台了细致的监管政策,涉及数据收集、数据治理标准、大数据软件应用等多个方面。另一方面,金融作为数据密集型行业,数据体量大,数据逻辑性强,对实时性、安全性和稳定性的要求高,同时结构化数据占比高,在分析工具成熟度方面具有明显优势。最后,金融行业的数据分析应用场景广泛,包括精准营销、风险控制、客户关系管理、反欺诈检测、反洗钱检测、决策支持、股票预测、宏观经济分析与预测等多个方面。大数据分析在金融行领域蕴含了巨大的潜力和挑战。