- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
时间:2019-03-20来源:亿信华辰浏览数:805次
数据治理是关于启用和鼓励有关数据的良好行为,以及限制产生风险的行为。无论您是在大数据环境还是传统的数据管理环境中,都是一样的。使组织能够识别谁负责数据,协作设置策略和制定决策,就如何使用数据及其用途创建明确的协议,了解某些指标和信息的来源,并确定变更对业务的影响数据。这些都是任何环境所需要的。
这些过程通常变化很大,涉及组织不同部门的许多不同利益相关者。他们也是时间敏感的。特别是在大数据场景中,数据变化的类型,数量和频率一直在增加。虽然可以执行一次或两次这些任务,但如果没有专门的系统和自动化,就不可能连续执行治理。以同样的方式考虑这一点,我们的大多数业务流程都需要自动化,以便高效,高效地执行。此外,与任何其他流程一样,必须测量和管理数据本身的治理,以便在必要时可以提高数据的质量,实用性和安全性。
这些过程还必须与合适的利益相关者联系。在许多情况下,了解数据含义和用途的个人不熟悉其管理的技术方面。他们是在业务部门工作的人,他们使用这些数据来提供价值。要获取他们的意见并为他们提供有用的帮助,需要专门为他们的需求量身定制的应用程序。
了解您需要管理的内容是实施适当数据治理的关键部分。虽然所有信息可能都应该受到某些治理的影响,并且应该对其进行编目以便找到,但是有一部分重要信息应该成为任何数据治理工作的重点。这些关键数据元素及其前提是组织决策,服务客户和向监管机构报告的基础。
数据治理不一定是一项新的繁琐的举措。实际上,由于对抑制因素和开销的感知,一些组织可能会搁置正式的数据治理计划。但事实是,您已经拥有适当的流程,可以作为正式数据治理计划的基础。这些可能被标记为“工作流程”或“业务规则”,但这些仅仅是针对同一组实践的不同术语。使用这些流程作为起点,构建一种策略,帮助您从大数据中获取更多价值。
实际上,大多数组织都认识到这些活动的重要性,并可能将它们在特定的功能或领域内系统化。同时,这些活动通常不会成为获得商业价值的障碍。例如,向数据驱动型组织过渡至关重要的是理解当数据以新的方式组合时数据的有趣见解。被称为“数据湖”的实现必然需要允许您以消除技术障碍的方式保留所需数据的过程,并提供处理该数据的新功能。这种灵活性意味着在将数据应用于新访问数据的整个范围时,可以无缝地管理和管理数据。
下一篇:数据治理的关键要求是什么?...
全面覆盖数据治理9大领域,采用微服务架构,融合度高,延展性强
实现数据从创建到消亡全生命周期的可视化,也实现全角色的可视化
丰富的智能元素和功能,大大缩短数据管理周期、减少成本浪费