亿信华辰

连续3年稳坐商务智能应用榜首

与此同时,亿信华辰在数据治理领域荣登五强

首页关于行业资讯数据治理

大数据资产管理平台建设方案

时间:2020-08-28来源:知乎浏览数:32

数据资产管理服务工作,涵盖企业IT系统生命周期的不同阶段,协助企业建立适合自身特点的数据资产管理制度,提升企业对自身数据资产管理的能力,为后续数据挖掘变现提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

数据资产管理简介
大数据时代已经来临,数据被业界公认为是企业最宝贵的资产之一,其价值得到了普遍认同。然而,绝大部份传统企业在尝试挖掘数据资产价值的过程中,都出现各种各样的问题,如:

数据架构混乱:系统越来越多,系统复杂度也越来越高,管理难度随之越来越大,没人能弄清整个系统的数据架构和数据流向,数据架构与业务流程、应用架构之间的关系不清晰。

架构管理滞后:甲方越来越依赖开发商,自身的系统数据架构管理力度不断减弱。同时,开发商以实现功能为主,对非功能性需求不太在意,导致版本质量不高,先实现后优化,优化效果滞后。
 
架构变更失控:大多数系统都处于积术式叠代开发,有新需求就加一堆表,使系统数据模型越来越雍肿;数据模型设计缺少审查,导致数据模型混乱、复杂、扩展性差。

数据无序增长:企业核心业务系统数据容量无序增长,长期处于“系统扩容 - 数据膨胀 - 性能低下 - 系统扩容”的怪圈之中。

数据标准缺失:缺少企业级别统一的数据标准,数据模型相关含义令开发和运维人员难以理解;同时,亦使得企业不同应用间的数据集成和数据共享困难。

数据安全突出:对企业的敏感数据、用户、访问权限仍然缺少认识和控制,敏感数据泄漏的安全事件屡见不鲜。

数据质量参差:数据处理环节中产生大量的错误和质量差的数据,数据错误发现和处理流程不及时,导致更多的后续错误。

数据资产管理(Data Asset Management,简称DAM)是规划、控制、和提供数据这种企业资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方案和程序。企业依赖有效数据资产管理为其提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

2、数据资产管理功能与特点
在传统行业中有丰富的数据资产管理相关项目经验,通过各种不同行业数据资产管理项目的成功经验总结,同时以DAMA等国外先进的数据资产管理理论为指导,归纳和梳理出数据资产管理服务框架。
 
数据资产管理率先提出以“服务”+“平台”的二元制方式驱动企业数据资产管理的迅速落地和开展。
服务:数据资产管理服务以数据架构管理为核心,涵盖数据标准、数据生命周期、数据分布、数据质量、数据安全以及数据操作等数据资产管理的各个方面。

3、数据资产管理解决问题
数据资产管理服务工作,涵盖企业IT系统生命周期的不同阶段,协助企业建立适合自身特点的数据资产管理制度,提升企业对自身数据资产管理的能力,为后续数据挖掘变现提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

数据资产管理平台实现数据资产的可视化、自动化和智能化运营,让数据资产管理团队从众多纷繁复杂的数据管理工作中解放出来,降低整体人员投入和成本投入。

快乐分享
© 2020 ESENSOFT 北京亿信华辰软件有限责任公司| 版权所有:京ICP备07017321号 京公网安备11010802016281号|免责声明

联系
电话

您好,商务咨询请联系

咨询热线:400-0011-866转0

手机咨询:137-0121-6790

社区
交流

产品技术问题交流

bbs.esensoft.com

9分钟快速处理问题