- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。
覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。
统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。
零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。
面向企业级数据资产交易运营场景,助力企业实现数据资产的价值挖掘、升值和资产变现。
时间:2022-03-17来源:萌翻全场浏览数:149次
当今的大型集团性企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格式也越来越多样化,包括IT系统里存储的结构化、非结构化数据,各样电子文档数据等。
与此同时,企业管理者对数据的困惑也与日俱增:这些数据从哪里来?我们能相信这些数据吗?数据之间有什么样的关系?谁能理解这些数据?
造成上述情况最根本的原因是:数据零散化存放。大型企业在不同发展阶段,会根据业务需求建设很多内部IT支撑系统,比如ERP(企业资源计划)系统、CRM(客户服务管理)系统、财务管理系统等,这些系统的分散建设,数据割裂,造成了数据零散化存放的现状。
基于数据做分析,首先需要数据的聚合,但由于生产系统和数据的离散化,造成了数据标准、数据模型不统一,而且数据质量也不高,因而企业最需要做的就是数据治理。
下面这份PPT介绍了企业数据治理落地实施方案,其中提到了数据标准管理、元数据管理、数据质量管理、数据集成管理、数据资产管理、数据安全管理等企业比较关注的数据治理细节,值得研究和学习。
上一篇:大数据治理平台建设规划方案...