- 产品
- 产品解决方案
- 行业解决方案
- 案例
- 数据资产入表
- 赋能中心
- 伙伴
- 关于
时间:2022-02-15来源:凤凰衣浏览数:1132次
通俗地讲,对企业来说,数据标准就是对数据类型、长度、归属部门等定义一套统一的规范,以保障不同业务系统之间可以做到对同样的数据理解统一和使用统一。
数据标准是指企业为保障数据的内外部使用和交换的一致性和准确性而制定的规范性约束。(详见:6000字详解数据治理之数据标准管理)
数据标准管理的对象可以分为数据模型、 主数据和参考数据、 指标数据三大类,每一类均可采用以数据元为数据标准制定的基本单元构建数据标准体系。1、 模型数据标准基础数据指业务流程中直接产生的,未经过加工和处理的基础业务信息, 模型数据是指对基础类 数据特征的抽象和描述。模型数据标准是为了统一企业业务活动相关数据的一致性和准确性,解决业务间数据一致性和数据整合,按照数据标准管理过程制定的数据标准,模型数据标准也是元数据管理的主要内容之一。以下是某银行为确保数据标准使用,形成的一整套模型数据标准的信息项属性架构:
下图是某运营商数据仓库DWD模型层常用数据元的标准定义示例:
并非所有模型数据、 主数据和参考数据、 指标数据都应纳入数据标准的管辖范围。数据标准管辖的数据,通常只需要在各业务条线、各信息系统之间实现共享和交换的数据,以及为满足监控机构、上级主管部门、各级政府部门的数据报送要求而需要的数据。《数据标准管理实践白皮书》将数据分为 基础类数据和指标类数据,数据标准也可以分为 基础类数据标准或 指标类数据标准,这种划分方法中的基础类数据其实等于模型数据+主数据+参考数据,因此不存在本质的区别。
企业下分支各自都有自己的信息管理系统,分别管理自己的业务形态,当总公司要进行数据整合的时候,几个系统的信息都会进行存在一张信息表中,其实这个就是在建立数据标准。
那么要建立一个数据管理平台,统一存储各个分支全部的交换信息时,信息表该如何创建?这就需要创建信息标准来整合企业内部不同部门业务系统产生的信息。
数据标准化的过程其实就是在数据管理平台实现数据标准,并将各个系统产生的数据通过清洗、转换加载到整合平台的数据模型中,实现数据标准化的过程。
所以,数据治理的第一步就是要梳理清楚企业拥有哪些数据,并整合数据。而构建数据整合平台则必须要建立一套数据标准和数据模型,实现数据的标准化。
可以说,数据标准是数据管理的基础性工作,是数据管理建设中的首要环节,具体主要体现在以下几个方面:
(1)数据标准为数据平台提供统一的数据标准定义和平台逻辑模型;(2)数据标准是数据平台进行数据治理的依据和根本;(3)数据标准是衡量数据平台数据资产运营和管理的评估依据;(4)需要通过数据标准管理的实施,实现对数据平台全网数据的统一运营管理。
数据标准管理是规范数据标准的制定和实施的一系列活动,是数据资产管理的核心活动之一,对于政府和企业提升数据质量、厘清数据构成、打通数据孤岛、加快数据流通、释放数据价值有着至关重要的作用。
如何构建数据标准,详见:如何建立数据标准实现数据资产管理?
《数据标准管理实践白皮书》给出了数据标准管理组织架构建议,即将数据标准管理组织划分为数据标准决策层、 数据标准管理部门、 数据标准执行层。数据标准决策层是企业数据标准管理的最高决策组织,主要职责是组织制定和批准数据标准规划、审核和批准拟正式发布的数据标准、协调业务和IT资源,解决在数据分类规划、体系建设、评审发布、执行落地中的全局性、方向性问题,推进企业整体开展数据标准化工作。数据标准管理层是企业数据标准管理的组织协调部门,主要职责是根据业务需求,组织业务和IT部门,开展数据标准落地工作组织业务部门和IT部门参与数据标准管理相关工作,并推进数据管理工作的进程,同时及时将数据标准管理过程中的成果或问题报决策层审批。数据标准执行层是指具体开展数据标准编制和体系建设的数据标准管理部门,通常由数据标准管理专家、相关业务和IT专家组成,主要职责是解决编制数据标准、推进数据标准落地工作中的各类具体业务问题和技术问题。
数据标准的落标需要重点考虑三大问题:
问题1. 什么数据需要制定哪些标准
问题2. 什么系统落什么标准
问题3. 什么人与什么时间执行
如果这三个问题没有想清楚,基本数据标准的梳理会停留在Excel层面,标准的政策会停留在墙上,无法走入每个设计者的头脑和每个系统的每个字段。第一个问题,什么数据需要制定标准,首先回到数据标准所要解决问题的初衷,数据标准主要解决数据在共享,融合,汇集应用中的不一致问题。那么看哪些数据会出现在这个这三个环节中,以及哪些容易出现问题。对于与一个企事业组织来说,按照价值链,一般关注三大要素:客户,产品,大运营。举例来说,将银行业划分为九大概念数据,也是围绕客户与产品的大运营活动细分。那么有如下几类数据会在数据应用过程中,会更多出现融合和汇总的机会,需要格外注意。